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Incompatible interpolation operator gives rise to representa-
tive error, which is a big challenge for improving the accu-
racy of numerical weather prediction. The multi-kernel in-
terpolation method based on Gaussian Process Regression
we proposed pave a new way to make use of multi variables
to infer the weather process.
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GPR and kernel tricks – Gaussian Process and GPR

Gaussian Process

GP is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

f (x) ∼ GP
(
m (x) , k

(
x, x′

))
(1)

For any X, the collection of x in GP, it follows a jointly
Gaussian distribution.

For GP, knowing mean function and covariance function
means knowing everything. GPR infers the predictive value
based on the mean function and covariance function



GPR – Start from Bayesian linear regression

y = f (x) + ε, f (x) = xwT

ε ∼ N
(
0, σ2

n

) (2)

Put a prior distribution on w : w ∼ N (0,Σp), the posterior
of y∗ at input vector x∗ is

p (y∗|x∗,X, y) =
∫
p (y∗|x∗,w) p (w|X, y) dw

= N
(

1
σ2
n
x∗TA−1Xy, xT

∗ A
−1x∗

) (3)

which implies it is a GRP model, where A = σ−2
n XXT+Σ−1

p ,
with a control function p (y|X,w).

p (y|X,w) =
∏n

i=1 p (yi |xi ,w)
= N

(
XTw, σ2

nI
) (4)



GPR – kernel tricks

F To deal with the nonlinear problem, import mapping
operator φ (·)

Idea

Change the BASIS SPACE

Why is it useful?
Change the measuring distance – the similarity of two input
vectors x, x′, which implies the similarity of targets



kernel function

p (y∗|x∗,X, y)

= N
(

1
σ2
n
φ (x∗)T A−1φ (X) y, φ (x∗)T A−1x∗

) (5)

p (y∗|x∗,X, y) = N
(
φT
∗ ΣpΦ

(
K + σ2

nI
)−1 y,

φT
∗ Σpφ∗ − φT

∗ ΣpΦ
(
K + σ2

nI
)−1

ΦTΣpφ∗

) (6)

where K = φ (X)T Σpφ (X) ,Φ = φ (X)
Suppose k (x, x′) = φ (x) Σpφ (x′)

p (y∗|x∗,X, y) = N
(
K (x∗,X)

(
K + σ2

nI
)−1 y,

K (x∗, x∗)−K (x∗,X)
(
K + σ2

nI
)−1 K (x∗,X)

) (7)



kernel function

k (·, ·) is called kernel function , it is a covariance function,
which defines the similarity

The predictive value of y∗ at input vector x∗,

y∗ = K (x∗,X)
[
K (X,X) + σ2

nI
]−1 y (8)

with a control function what solves the unknown parameter
θ , which are σ2

n,Σp here.

log p (y|X, θ) = −1
2
yTK−1y − 1

2
log |K | − n

2
log 2π (9)



popular kernel function

kenel formula advantages

SE exp
(
− r2

2l2

)
smooth

Matérn
(
1 +

√
3r
l

)
exp

(
−
√

3r
l

)
rough

Gabor exp
(
−1

2t
TΛ−2t cos

(
2πtTp I

))
edge extraction

Periodic u(x) = (cos (x) , sin (x)) periodical space

Generating kernel from old kernel

k (x, x′) = k1 (x, x′) + k2 (x, x′)
k (x, x′) = k1 (x, x′) ∗ k2 (x, x′)
k (x, x′) = αk1 (x, x′)

(10)



Multi-kernel

kv (·, ·) = km (·, ·) + kp (·, ·) + kg (·, ·) + kε (·, ·) (11)

where km, kp, kg , kε denotes Matérn of t = 3
2 , periodical Matérn,

gabor and noise kernel, respectively.

The information that they try to capture:

kenel target
km depicting the roughness of weather process
kp periodical information of vortex in typhoon region or wind belt
kg extracting the vortex texture, the edge of wind belt
kε noise



Multivariate Multi-kernel

Limitation

• 1D-GPR equals the piecewise spline
• The partial information of spacial distribution

Tips: importing more information

• space information(longitude and latitude) – key
feature
• the principle component of wind direction, pressure

and temperature – secondary feature



Multivariate Multi-kernel

kvms (·, ·) = kv (·, ·) + k
′
v (·, ·)

kvmp (·, ·) = kv (·, ·) ∗ k ′
v (·, ·) (12)

where kvms denotes the correction kernel for the weather in
normal condition, kvmp denotes the correction kernel for the
weather in extreme condition.
kv is trained by key feature, k ′v is trained by secondary fea-
ture.

♣ Should I Explain it?



Wind field interpolation – Normal weather condition
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Wind field interpolation – Normal weather condition
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♣ Experiment?



Wind field interpolation – Extreme weather condition
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Wind field interpolation – Extreme weather condition
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Wind field interpolation – Extreme weather condition



GPR and 3DVAR

loss function

−1
2
yTK−1y − 1

2
log |K | − n

2
log 2π

−1
2

(xa − xb)T B−1 (xa − xb)−1
2

(y − H (xa))T R−1 (y − H (xa))

Dose the matrix B describes the similarity?



GPR and 3DVAR

assumption

y ∼ GP

prior : x ∼ N (xb,B)

xa follows a single Gaussian distribution, Whether or not?
What if we suppose xa comes from a Gaussian mixture dis-
tribution?



kernel functions

step

(1) Mining: the backgroud of your dataset
(2) Draw: visualizing your data
(3) Choice: appropriate kernel – stationary? periodical?

linear? smooth?
(4) Try



Autoregression model – may be nonsense

AR,MA,ARMA etc.
Taking the series itself as the only explaining variable, the
idea of them is extremely simple. They are popular in sta-
tionary series analysis.



Some about M.L.

Any model can be powerful, even the simplest one, as long
as you make a good decision, that is, choose a model that
fits your data.
Neither M.L. nor D.L. are the magician, you are, you are
the one who teach them how to do and what to do.
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